761 research outputs found

    Self-similar shear-thickening behavior in CTAB/NaSal surfactant solutions

    Full text link
    The effect of salt concentration Cs on the critical shear rate required for the onset of shear thickening and apparent relaxation time of the shear-thickened phase, has been investigated systematically for dilute CTAB/NaSal solutions. Experimental data suggest a self-similar behavior of the critical shear rate and relaxation time as functions of Cs. Specifically, the former ~ Cs^(-6) whereas the latter ~ Cs^(6) such that an effective Weissenberg number for the onset of the shear thickened phase is only weakly dependent on Cs. A procedure has been developed to collapse the apparent shear viscosity versus shear rate data obtained for various values of Cs into a single master curve. The effect of Cs on the elastic modulus and mesh size of the shear-induced gel phase for different surfactant concentrations is discussed. Experiments performed using different flow cells (Couette and cone-and-plate) show that the critical shear rate, relaxation time and the maximum viscosity attained are geometry-independent. The elastic modulus of the gel phase inferred indirectly by employing simplified hydrodynamic instability analysis of a sheared gel-fluid interface is in qualitative agreement with that predicted for an entangled phase of living polymers. A qualitative mechanism that combines the effect of Cs on average micelle length and Debye parameter with shear-induced configurational changes of rod-like micelles is proposed to rationalize the self-similarity of SIS formation.Comment: 27 pages, 17 figure

    Hyperpolarized Long-T1 Silicon Nanoparticles for Magnetic Resonance Imaging

    Get PDF
    Silicon nanoparticles are experimentally investigated as a potential hyperpolarized, targetable MRI imaging agent. Nuclear T_1 times at room temperature for a variety of Si nanoparticles are found to be remarkably long (10^2 to 10^4 s) - roughly consistent with predictions of a core-shell diffusion model - allowing them to be transported, administered and imaged on practical time scales without significant loss of polarization. We also report surface functionalization of Si nanoparticles, comparable to approaches used in other biologically targeted nanoparticle systems.Comment: supporting material here: http://marcuslab.harvard.edu/Aptekar_hyper1_sup.pd

    Nuclear medicine procedures and the evaluation of male sexual organs: a short review

    Get PDF
    Sexuality consists of three aspects that are interrelated and inseparable, biological, physiological and social. The biological aspect considers the individual's capability to give and to receive pleasure. In consequence, it covers the functionality of the sexual organs and the physiology of human sexual response cycle. Diagnostic imaging modalities, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been used to evaluate clinical disorders of the male reproductive system. PET and SPECT procedures basically involve the administration of a radiopharmaceutical that has a higher uptake in a specific tumor or tissue. The aim of this brief review is to present some radiopharmaceuticals that have been used in the clinical evaluation of the male sexual organs (testes, prostate, seminal vesicles, penis) related with male sexuality. This information could be useful in better understanding the male sexual response cycle, as well as the sexual disorders, when considering the male sexual organs and the pelvic floor. Moreover, the findings obtained with PET and SPECT imaging could help to evaluate the efficacy of clinical results of therapeutic procedures. In conclusion, the knowledge from these images could aid in better understanding the physiology of the different organs related with sexuality. Furthermore, they could be important tools to evaluate the physiological integrity of the involved organs, to improve clinical strategies and to accompany the patients under treatment

    Progress in the Prediction of pKa Values in Proteins

    Get PDF
    The pKa-cooperative aims to provide a forum for experimental and theoretical researchers interested in protein pKa values and protein electrostatics in general. The first round of the pKa-cooperative, which challenged computational labs to carry out blind predictions against pKas experimentally determined in the laboratory of Bertrand Garcia-Moreno, was completed and results discussed at the Telluride meeting (July 6–10, 2009). This article serves as an introduction to the reports submitted by the blind prediction participants that will be published in a special issue of PROTEINS: Structure, Function and Bioinformatics. Here, we briefly outline existing approaches for pKa calculations, emphasizing methods that were used by the participants in calculating the blind pKa values in the first round of the cooperative. We then point out some of the difficulties encountered by the participating groups in making their blind predictions, and finally try to provide some insights for future developments aimed at improving the accuracy of pKa calculations

    SALL1 enforces microglia-specific DNA binding and function of SMADs to establish microglia identity

    Get PDF
    Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFΞ² and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFβ–SMAD signaling axis.</p

    Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform

    Get PDF
    Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL(-1), where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL(-1) (R-2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples.ope

    A Unique Role for Nonmuscle Myosin Heavy Chain IIA in Regulation of Epithelial Apical Junctions

    Get PDF
    The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-Ξ³

    Get PDF
    Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-Ξ³ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-Ξ³-responsive promoters. However, neither synthesis nor secretion of IFN-Ξ³ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity
    • …
    corecore